Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 166: 761-769, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34217132

RESUMO

Pecan plants are attacked by the fungus Phomopsis spp. that causes stem canker, a serious and emerging disease in commercial orchards. Stem canker, which has been reported in several countries, negatively affects tree canopy health, eventually leading to production losses. The purpose of this study was to inquire into the physiology of pecan plants under stem canker attack by Phomopsis spp. To this end, pecan plants were inoculated with an isolate of Phomopsis spp. and several parameters, such as polyamines, proline, sugars, starch, chlorophyll fluorescence and canopy temperature were analysed. Under artificial inoculation, a high disease incidence was observed with symptoms similar to those in plants showing stem canker under field conditions. Furthermore, the infected stem showed dead tissue with brown necrotic discolouration in the xylem tissue. The free polyamines putrescine, spermidine, and spermine were detected and their levels decreased as leaves aged in the infected plants with respect to the controls. Chlorophyll fluorescence parameters, such as Sm, ψEO, and QbRC decreased under plant infection and therefore the K-band increased. Canopy temperature and proline content increased in the infected plants with respect to the controls while sugar content decreased. These data suggest that stem canker caused by Phomopsis spp. induces physiological changes that are similar to those observed in plants under drought stress. To our knowledge, this is the first study that documents the physiological and biochemical effects derived from pecan-Phomopsis interaction.


Assuntos
Carya , Poliaminas , Clorofila , Fluorescência , Phomopsis , Folhas de Planta
2.
Front Plant Sci ; 10: 1415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749821

RESUMO

Polyamines (PAs) are natural aliphatic amines involved in many physiological processes in almost all living organisms, including responses to abiotic stresses and microbial interactions. On other hand, the family Leguminosae constitutes an economically and ecologically key botanical group for humans, being also regarded as the most important protein source for livestock. This review presents the profuse evidence that relates changes in PAs levels during responses to biotic and abiotic stresses in model and cultivable species within Leguminosae and examines the unreviewed information regarding their potential roles in the functioning of symbiotic interactions with nitrogen-fixing bacteria and arbuscular mycorrhizae in this family. As linking plant physiological behavior with "big data" available in "omics" is an essential step to improve our understanding of legumes responses to global change, we also examined integrative MultiOmics approaches available to decrypt the interface legumes-PAs-abiotic and biotic stress interactions. These approaches are expected to accelerate the identification of stress tolerant phenotypes and the design of new biotechnological strategies to increase their yield and adaptation to marginal environments, making better use of available plant genetic resources.

3.
J Plant Physiol ; 231: 281-290, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30342327

RESUMO

The polyamines putrescine, spermidine and spermine participate in a variety of cellular processes in all organisms. Many studies have shown that these polycations are important for plant immunity, as well as for the virulence of diverse fungal phytopathogens. However, the polyamines' roles in the pathogenesis of phytopathogenic bacteria have not been thoroughly elucidated to date. To obtain more information on this topic, we assessed the changes in polyamine homeostasis during the infection of tomato plants by Pseudomonas syringae. Our results showed that polyamine biosynthesis and catabolism are activated in both tomato and bacteria during the pathogenic interaction. This activation results in the accumulation of putrescine in whole leaf tissues, as well as in the apoplastic fluids, which is explained by the induction of its synthesis in plant cells and also on the basis of its excretion by bacteria. We showed that the excretion of this polyamine by P. syringae is stimulated under virulence-inducing conditions, suggesting that it plays a role in plant colonization. However, no activation of bacterial virulence traits or induction of plant invasion was observed after the exogenous addition of putrescine. In addition, no connection was found between this polyamine and plant defence responses. Although further research is warranted to unravel the biological functions of these molecules during plant-bacterial interactions, this study contributes to a better understanding of the changes associated with the homeostasis of polyamines during plant pathogenesis.


Assuntos
Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Putrescina/metabolismo , Solanum lycopersicum/microbiologia , Espermidina/metabolismo , Espermina/metabolismo , Clorofila A/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Solanum lycopersicum/metabolismo , Imunidade Vegetal , Folhas de Planta/metabolismo
4.
Mol Plant Microbe Interact ; 24(8): 888-96, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21751851

RESUMO

Botrytis cinerea, as a necrotrophic fungus, kills host tissues and feeds on the remains. This fungus is able to induce the hypersensitive response (HR) on its hosts, thus taking advantage on the host's defense machinery for generating necrotic tissues. However, the identity of HR effectors produced by B. cinerea is not clear. The aim of this work was to determine whether botrydial, a phytotoxic sesquiterpene produced by B. cinerea, is able to induce the HR on plant hosts, using Arabidopsis thaliana as a model. Botrydial induced the expression of the HR marker HSR3, callose deposition, and the accumulation of reactive oxygen species and phenolic compounds. Botrydial also induced the expression of PR1 and PDF1.2, two pathogenesis-related proteins involved in defense responses regulated by salicylic acid (SA) and jasmonic acid (JA), respectively. A. thaliana and tobacco plants defective in SA signaling were more resistant to botrydial than wild-type plants, as opposed to A. thaliana plants defective in JA signaling, which were more sensitive. It can be concluded that botrydial induces the HR on its hosts and its effects are modulated by host signaling pathways mediated by SA and JA.


Assuntos
Aldeídos/toxicidade , Arabidopsis/efeitos dos fármacos , Botrytis/metabolismo , Compostos Bicíclicos com Pontes/toxicidade , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Sesquiterpenos/toxicidade , Aldeídos/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/genética , Compostos Bicíclicos com Pontes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Sesquiterpenos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Nicotiana/microbiologia
5.
Plant Physiol ; 147(4): 2164-78, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18583531

RESUMO

The role of polyamine (PA) metabolism in tobacco (Nicotiana tabacum) defense against pathogens with contrasting pathogenic strategies was evaluated. Infection by the necrotrophic fungus Sclerotinia sclerotiorum resulted in increased arginine decarboxylase expression and activity in host tissues, as well as putrescine and spermine accumulation in leaf apoplast. Enhancement of leaf PA levels, either by using transgenic plants or infiltration with exogenous PAs, led to increased necrosis due to infection by S. sclerotiorum. Specific inhibition of diamine and PA oxidases attenuated the PA-induced enhancement of leaf necrosis during fungal infection. When tobacco responses to infection by the biotrophic bacterium Pseudomonas viridiflava were investigated, an increase of apoplastic spermine levels was detected. Enhancement of host PA levels by the above-described experimental approaches strongly decreased in planta bacterial growth, an effect that was blocked by a PA oxidase inhibitor. It can be concluded that accumulation and further oxidation of free PAs in the leaf apoplast of tobacco plants occurs in a similar, although not identical way during tobacco defense against infection by microorganisms with contrasting pathogenesis strategies. This response affects the pathogen's ability to colonize host tissues and results are detrimental for plant defense against necrotrophic pathogens that feed on necrotic tissue; on the contrary, this response plays a beneficial role in defense against biotrophic pathogens that depend on living tissue for successful host colonization. Thus, apoplastic PAs play important roles in plant-pathogen interactions, and modulation of host PA levels, particularly in the leaf apoplast, may lead to significant changes in host susceptibility to different kinds of pathogens.


Assuntos
Ascomicetos/fisiologia , Nicotiana/microbiologia , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Pseudomonas/fisiologia , Amina Oxidase (contendo Cobre)/antagonistas & inibidores , Carboxiliases/metabolismo , Regulação da Expressão Gênica de Plantas , Necrose/microbiologia , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Extratos Vegetais/química , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Putrescina/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermina/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo , Poliamina Oxidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...